COMP23111 - Fundamentals of Databases Deriving a DRS from a DFD

Data Requirements Specifications from
Data Flow Diagrams

Introduction:
In order to design a conceptual data model (as part of a software development project), the
first step is to produce a data requirements specification (DRS).

Here, due to the limitations inherent in an educational environment, we must assume that
a DRS is derived from a process model, rather than independently, by database designers,
through a process of face-to-face interaction with stakeholders. In doing so, we assume that it is
the systems analysts that have engaged in such interaction and that, as data analysts/database
designers, we are operating downstream from the process modelling phase, in terms of the
software development life cycle.

Thus, we assume that in order to produce a DRS, the database designers work from a process
model and, if necessarily, elicit further clarification from the systems analysts who generated
the latter from face-to-face contact with stakeholders.

These notes briefly introduce the notion of process models that are represented as data flow
diagrams (DFDs) using the Gane-Sarson notation. Our goal here is to explain the syntax and
semantics of DFDs with the specific purpose of allowing the reader, who is assumed to be a
database designer, to extract from one such diagram a DRS, from which, in turn, a conceptual
data model can later be derived.

Interpreting a Process Model:

A process model is an abstract representation of a system centred on its functions, also
referred to as processes, and how they capture, transform, store and distribute the data among
the components of the system, as well as across the latter’s boundary and into the external
environment.

A data flow diagram (DFD) depicts a process model in graphical form. A DFD is a graph
with three types of nodes and one type of edge. The node types denote functions, data stores
and external entities (also referred to as sources or sinks). External entities can be real agents
(e.g., people, and organizations) in the real world or other processes that comprise a larger
process of which the one described by the DFD is itself a component. Edges are directed and
denote the flow of data from one node to another (possibly more than one in either case).

Nodes and edges are labelled. An edge label is a noun denoting the data item that is incoming
or outgoing from a node. In the case of external entities, the label is a noun that indicates the
agent, or system, that it represents. In the case of functions, the label is a verb phrase that
indicates how it transforms the incoming edges into the outgoing edges. In the case of data
stores, the label is a noun that indicates what data items flow into and out of the data store.

customer / \ (\
registration

period/location —

outcome

register generate customer
new new customer welcome

customer list system
customer new customers 4

registration
information

customer
registration
information

customer data

item + dispatch confirmation

customer payment details

product availability

A T T

order details item paid-for item
check

product
availability

process dispatch
payment item

unlocked /
removed \ payment \
item received
product
current payments (\

id :
stock received period

1

catalogue/stock payments fetch
payments

system

receipt new

accounting

payments

Figure 1: An Example DFD for (Part of) an E-Commerce System

Consider the example DFD in Figure 1, depicting a very small part of an e-commerce system.

In this example, one type of external entity is a customer. Another, is the customer welcome
system, which, for example, sends a printed welcome pack containing information about terms
and conditions, and so on.

In this example, at the top half of the DFD, there are two functions: one is to register new
customers, the other is to generate a new customer list for the benefit of the customer welcome
System.

The register new customer function has an incoming edge from the customer external entity
labelled customer registration information and two outgoing edges: one, labelled customer
registration information, into a data store labelled customer data and another, labelled
customer registration outcome, into the customer external entity.

The generate new customer list function has two incoming edges and one outgoing edge. One
incoming edge from the customer welcome system makes available the parameters that decide
who goes into the list of new customers in terms of their location (say, Manchester) and the
registration date (say, in the last calendar month). The other incoming edge, from the customer
data store, indicates that the function (potentially) processes all existing customers whose
information is held in the customer data store. The outgoing edge into the customer welcome
system is the list of new customers in the requested period and location.

The bottom half of the DFD is more complex, as it covers the sale process itself, from an order
to payment receipt and item dispatch. Make sure you can read the notation and understand
the process being modelled, but be careful not to allow yourself to impose on it your own
intuitions as what is the right or wrong way to do it. This is important in practice, but not
here, not now.

The best intuition about DFDs is that they represent how data, stemming from external
entities acting as sources, enters the process, is transformed by functions, possibly resting in
data stores at different stages of the overall flows, and eventually leaves the process, destined
to external entities acting as sinks.

Notice that the edges denote collections of data, not individual records, or data items. These
collections can, potentially, be singletons, but are always thought of as collections. This
implies that data store operations are assumed to be collection-based and that a function
is conceived of as operating on an entire collection of items (i.e., it would not be inappro-
priate to think of functions as iterative control structures, or, possibly, recursive computations).

Notice that a data store represents data at rest, in the sense that the flow from one function
to another is interrupted, or decoupled in time, by placing the data in the store.

Notice, finally, that a DFD has a logical boundary defined by its external entities. This means
that, from the viewpoint of modelling the process that the DFD represents, we are unconcerned
with that use was made of the inflowing data as well as what use is made of the outflowing
data. So, we do not consider any interactions between external entities and, it also follows
from the fact that they lie outside the process boundary that they are not allowed to act on
stored data directly: there must be functions that mediate the interaction of external entities
with the stored data.

One can draw DFDs at different levels of abstraction but the most crucial ones for software
system development are those referred to as level-0 DFDs, which define how a particular
system performs the major functions of an information system. So, a level-0 DFD defines the
external entities that act as sources of data and how to capture data from them as well as also
defining the functions that transform and distribute the resulting data products to external
entities that consume them, possibly whilst requiring data to rest in data stores for particular
purposes and reason (e.g., time decoupling, sharing, etc.).

Level-0 DFDs capture the primary functions in a process, i.e., those that are most essential
to articulate the fundamental nature of the information system, and, in an organizational
context, the strategy for adding value to the inputs and generate outputs that allow the orga-
nization to deliver what its stakeholders need and, hence, compete strongly in its target market.

It is important to bear in mind that DFDs are not meant to model timing, therefore it is best
to draw, and interpret, DFDs as capturing a process that is in constant flow, and has never

started nor will ever end.

For a DFD to be well-formed the constraints in Figure 2 must hold.

C1

C2
C3
C4

C5

C6

C7

C8

C9
C10

Nodes and edges are identified by their name, so if a node or edge appears more than once
in a DFD, typically to avoid graphical congestion and confusion, then it is the same node
or edge. In the case of nodes, it is customary to draw a mark (e.g., a little diagonal line in
the top-left corner) to indicate that this node also appears elsewhere.

No function can have only inputs.
No function can have only outputs.

Data cannot directly flow from one data store to another, or from an external entity to
another, or from an external entity into a data store, or from a data store to an external
entity: only a function can move data, or for one function to that same function: in all
such cases, an explicit function must mediate.

A function transforms inputs into outputs, therefore the incoming edges must be different
than the outgoing ones. If a function merely retrieves data (e.g., call it D) from a store S
in order to distribute it to an external entity F without transforming, then we qualify, e.g.,
retrieved- D-from-S-for-FE. Likewise, if a function merely obtains data from an external
entity in order to pass it on to a function F' or to store it in a store S, then we qualify, e.g.,
obtained-D-from- E-for-S (or F, if that is the case).

A data flow is never bidirectional: two flows must be drawn and qualification is used to
distinguish them.

One data flow may fork into n flows, with the semantics the collection is identically repli-
cated n times, one for which destination.

n data flows may join into one flow, with the semantics that the different collections are
merged in a non-specified manner (e.g., by set, or bag, union).

A flow into a store has general update semantics (i.e., create, replace, update or delete).

A flow out of a store has the semantics of retrieve (or fetch) without modification.

Figure 2: DFD Well-Formedness Constraints

Deriving a DRS from a Level-0 (New, Logical) DFS:

Recall that our specific purpose in these notes is to explain to the reader, who is assumed to
be a database designer, how to derive a DRS from a DFD, from which, in turn, a conceptual
data model can later be derived.

In software development, we often develop logical models and physical models, where the latter
abstracts from the implementation details that is the purpose of the latter to capture. Also,
for each of logical and physical models we often develop one model of the current system (if
any) and another model of the new, desired system.

For the purpose in hand, i.e., deriving a DRS from a DFD, we will assume we have a logical
level-0 DFD of the new, desired system.

What Does a DRS Capture?

Given a logical level-0 DFD of the new, desired system, the derivation of a DRS de-
pends on obtaining answers to questions that elicit the necessary information that goes in
a DRS. In order to motivate the questions, we now consider in more detail what a DRS captures.

A DRS aims to explicitly record (among other kinds of information of less relevance here) the
information characterized by the questions in Figure 3.

How Does a DFD Help Elicit a DRS?

A data analyst would use the logical level-0 DFD of the new, desired system that has resulted
from process modelling as an interface between her and the stakeholders to carry out the first
step of data modelling, viz., eliciting a DRS.

In doing so, a data analyst would ask the kind of questions illustrated in Figure 4. Note that
they are closely related to those in Figure 3 (though not all questions in the earlier figure are
represented in the later one). However, the data analyst uses the logical level-0 DFD of the
new, desired system to phrase them in terms that are closer to the way the stakeholders view
the workings of their organization.

A Concrete Example: Using the DFD to Ask the Right Ques-
tions.

Now, consider again the simple e-commerce system in Figure 1. Example questions that a data
analyst may be prompted to ask when we’re guided by that level-0 DFD and her common-sense
intuitions are shown in Figure 5. These are keyed to the question types in Figure 4, but, note
that, here, we don’t have a real stakeholder to interview, so we’ll assume some likely answers
based on common knowledge, for the sake of practicing formulating these kinds of questions.
Note, also, that the examples below are not exhaustive, the example questions do not system-
atically traverse all of the DFD in Figure 1: in real software development, you would do so, but
then, the interaction and reflection processes that go into the generation of a complete DRS
typically take in the order of weeks or months.

A Concrete Example: Transforming the Answers into a DRS.
Figure 6 illustrates how a data analyst would use the answers obtained from the stakeholder
to derive a DRS for the new system. This DRS, in turn, would be the basis for designing the
database to support the new system, as we shall explore later in this course unit.

I

12

13

14

15

16

I7

18

19
110
111
112

113

114

What entity types (or classes of objects) will have data about them stored?

What subtypes or supertypes or composite types or union types of entities of interest are of
interest themselves?

What relationship types there exist between the entity types of interest?

Is the participation of every entity of a certain type in a given relationship type mandatory
or optional (i.e., can, or cannot, there be an entity in the store that does not participate in
a relationship of that type)?

When an entity of a certain type participates in a given relationship type, does it do so once
only or multiple times?

What attributes characterize the data that is stored about entities or relationships of a
certain type?

Is any of an entity’s attributes identifying and, if so, which?

Is the scope of identification of an identifying attribute global (i.e., unique with global scope)
or partial (i.e., dependent on the identifying attribute of some other entity, meaning that it
needs the latter to become globally unique)?

Is any attribute is multivalued?

Is any attribute computable from other attributes?

Is any attribute complex, i.e., composed of other, component, attributes?

What is the type of each attribute and what rules, if any, constrain the values it can take?

What constraints, if any, characterize the valid states of the stored data and hence must be
satisfied at all times?

Does the history of any data item need to be recorded?

Figure 3: The Information Content of a DRS as a Set of Questions

Practice Tasks:
Consider the example level-0 DFD in Figure 7, depicting a simple web store front-end system.

1. Using Figure 7 as your reference, and Figure 5 as an example to guide you, write down

one or more questions of each of the types (i.e.,Q1 to Q8) in Figure 4.

2. Using Figure 5 as an example to guide you, provide common-sense, intuitive answers (that

conform with Figure 7) for the questions you wrote down in response to the previous task.

3. Using Figure 6 as an example to guide you, write down the DRS items that follow from

the answers you gave in response to the previous task.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

For each data flow, what is inside it? Information about a stakeholder (e.g., an account
holder)? Is it perhaps a product (e.g., insurance) or service (e.g., currency exchange)
bought or sold? Or is it a document (e.g., the record of a transaction in an ATM)? Must
this information be kept stored? Or is it used and discarded?

For each identified stakeholders, products, services, documents, etc., does it have supersets
or subsets that we take an interest on? For example, the various products (i.e., current
accounts, savings accounts, insurance, investment funds, etc.) can be grouped as types of
account since they share some common properties (e.g., an opening date, a balance, etc.)
while having specific properties of their own (e.g., current accounts have an interest-due
rate for overdrafts, savings accounts have an interest-paid rate, etc.). As an example of
subsetting, some investment accounts are on stocks, others on commodities, and so on.

Do the identified stakeholders, products, services, documents, etc., have a unique, strong,
global identifying property? For example, in the UK, a person typically has a National
Insurance number that is a unique, strong, global identifying property of that person. In
contrast, an address is only possibly unique if one takes the postcode and adds the house
number. Also, a flat number is unique only in the context of a given block, i.e., it’s not a
strongly, globally identifying, it’s only weakly, partially so because it must be concatenated
with the identifying property of the building before we be certain which flat is being referred
to.

For each stakeholder, product, service, document, etc., what information about it is flowing
(e.g., for a service like currency exchange, these could be the source currency, the target
currency, the exchange rate, the amount, the date and time, the source and target accounts,
ete.)?

Which, if any, of these properties composite (i.e., made of component properties, like an
address might be composed of house number, street name, and flat number)? Which, if
any, is multivalued (e.g., a block of flats may have several entrances, e.g., front, left, right,
back)? Which, if any, is derivable from others (e.g., the total insurable value of a building
is the sum of the insurable values of each flat in it plus the insurable value of the common
areas)?

For the identified stakeholders, products, services, documents, etc., how do they relate to
each other? For example, an account holder contracts insurance.

For each such identified relationship type, must it always hold for each stakeholders, prod-
ucts, services, documents, etc.? For example, is it the case that every account holder must
have contracted an insurance product, meaning that unless some insurance is contracted
accounts cannot be held with the company, or is it instead the case that someone can hold
an account without contracting any insurance? In the other direction, is it the case that
every insurance product must have some account holder that has contracted it, or is it the
case that there can be insurance products that have no contractors yet?

For each identified relationship type, can my stakeholders, products, services, documents,
etc. participate in it? For example, is it the case that an account holder can contract many
insurance products or just one? In the other direction, is it the case that an insurance
product can be contracted by many account holders or exclusively by one account holder
only?

Figure 4: Some of the Questions a Data Analyst Asks so as to Derive a DRS

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Must information about customer external entities be stored?
A: Yes, we store data about our customers.

Is the customer data data store just a temporary resting place in the flow of data or does it really
constitute a data asset of the organization?
A: It is a data asset for us.

Are there different types of customer? For example, premium and freemium?
A: No, there aren’t different subsets of interest among our customers.

Is there some piece of information that distinguishes one customer from all the others?
A: Yes, when a customer registers, we assign it a customer id number whose uniqueness we enforce
rigorously.

What data do you want to hold about a customer?
A: Besides the customer id, the password, the name, the address, the date of birth, the age, the
phone numbers.

Are any of these composite, i.e., made of parts?
A: Yes, we break down the name into first name and last name. Also, we break down address into
postcode, house number, and flat number.

Do I take it that you store more than one phone number for a customer?
A: Yes, we do.

And do you differentiate between, say, landline and mobile numbers?
A: No, we don't.

Am I right in assuming that we can compute the age of the customer on any given date using the
date of birth?
A: Yes, I suppose you are right.

How would you describe the sales process?

A: A customer makes an order. The order list the products of interest, which are checked for
availability. If the products are available, the customer sends us payment details. These are then
processed, so that a receipt reaches the customer. Paid-for items are then dispatched to the customer
with a dispatch confirmation.

Can I confirm the relationships and /or documents I have identified? The relationships are: customer
makes order, order lists product, customer sends payment, product is prepared for dispatch, customer
receives product.

A: This seems right, in a nutshell.

Am T right in assuming that, therefore, over and above data about customers, you want to hold
data about products in a catalogue, orders and payments received and items dispatched? A: Yes,
this is correct.

Now, going back to the customer makes order and the order lists product relationships. Am I right
in assuming that a customer can have many orders in your data stores but each order can only refer
to a single customer, and also that a order can list many products and that each product can be
listed in many orders?

A: Almost all of it is right. The unusual detail is that we actually allow an order to refer to more
than one customer.

Now, let stay with the customer makes order and the order lists product relationships. Am I right
in assuming that customer data is kept even if the customer may not have made any order, but
that an order must have been made my some customer, and also that a order must list at least one
product and but that product data is kept even though it may not have been listed in any order?
A: Yes, you got all of it right this time.

Figure 5: Data Analyst Questions Guided by Figure 1

R1
R2
R3
R4

R5

R6

R7

RS

R9

R10

There is a need to store data about each customer.
There are no sub- or supersets of interest for customer.
The identifying property of customer is a company-assigned customer id.

Besides the customer id, a customer has the following data about it stored: password, name
[composite of first name and last name|, address [composite of postcode, house number, flat
number], date of birth, age [derived from date of birth, the phone numbers [multivalued].

Here, by analogy with customer, there would be data requirements specs for order, product,
payment, dispatch. In what follows, we assume they exist.

A customer makes an order. A customer can make many orders but there may be a
customer that has not made any orders. An order can be made by many customers and
there may not be an order that has not been made by some customer.

An order lists a product. An order can list many products and a product can be listed in
many orders. An order must list a product but a product may not have been listed in any
order.

Here, all the other relationships would have been considered.

Also, the data analyst would consider whether more needs to be recorded about each rela-
tionship, e.g., the date an order was made, the credit/debit card number used to make a
payment, etc.).

Finally, we’re omitting here the many constraints that data needs to obey, from valid values
(e.g., of dates, or postcodes, etc.) to business rules (e.g., that there is a day-limit on the
total amount charged of a single credit/debit card number).

Figure 6: (Partial) Data Requirements Specification from Figure 1

Order I
Status

. Order
Information 6.0 vahad
Order = Information
Order Status
5.0 Number Request
Customer
Add/Modify Information Order
— A ccount CUSTOMER | skl
Profile
Customer
Customer Information/ID v
Information
PURCHASING
B — » FULFILLMENT —
CUSTOMER D SYSTEM
=3 TRACKING =% 1
SYSTEM 4.0
I Customer = Order Number/
1 Return Cod
Information » Check Out g eturm e
Process Cart ID/
ltem Lo Item Profile
Profile
Check Out/ | Invoice ltems in
Customer Cart
I ID
Prlt;):':c‘! 3I0 Remove ltem/
1.0 Request Y Ty . Product ltem
ltem Di
Browse ——— splay
o Catalog CUSTOMER S [T
Cart
View
Cart *
ltem
ltem Purch Cart ID/
Profile Pr;edmuct Brofile Rer:u::te ftem Profile
\ J
20
4 ltem |
Select Profile | -
D2 Shopping Cart =

D1 Inventory

e < R T

Purchase

Figure 7: A Level-0 DFD for a Web Store

